

SCM: SCalable Middleware System for
Heterogeneous Distributed Databases

 Darshana Shimpi, Prof. Mrs. Sangita Chaudhri

Computer Engineering Department, Mumbai university

A.C. Patil College of engineering, Kharghar, Navi Mumbai, India

Abstract-Middleware is an essential component for any type of
distributed environment and network application. There are
different middleware systems (like SQMD, DisCo, MOCHA,
Open-Gate, OGSA-DAI, OGSA-DQP) which gives good
performance, but most of them lack integrity constraints and
scalability. Data integration using traditional database system
or database gateway are not feasible or sufficient. Database
middleware systems are used to integrate heterogeneous data
sources distributed over network. There is a need to provide a
mechanism which provides uniform view and access interface
for heterogeneous data sets. Our SCM system gives design of
scalable and efficient database middleware system for
heterogeneous distributed databases with the characteristics
of reliability, scalability and high performance. This
middleware system has wrapper, integrator and query
processor. It uses wrapper when integration of heterogeneous
databases is required. We present the architecture of the
scalable middleware system, the ideas behind it, the
experiment and its result. The results of this middleware
system provides flexible, scalable and efficient framework for
heterogeneous distributed databases.

Keywords-Heterogeneous Distributed databases, wrapper,
middleware, integrator

I. INTRODUCTION
The intermediate software layer between application,
operating system and communication system is known as
middleware. Middleware migrate applications between
client and server and also provide communication across
heterogeneous platforms [3]. Middleware provides a
uniform interface between a query and multiple, distributed
databases. Services provided by middleware include
enterprise application integration, data integration, message
oriented middleware (MOM), object request broker (ORB),
and the enterprise service bus. In distributed database
system there are various loosely coupled sites that share no
physical components [2]. In distributed databases,
distribution of data is transparent to the user.
Middleware has some important functions as distribution
transparency, uniform interface, hiding heterogeneity and
use of some common services. Middleware is used to hide
the distribution of data across multiple sites and it provides
an uniform view to the user. In distributed database system,
the system is with various operating system and hardware
components. Middleware hides this heterogeneity. By
hiding heterogeneity, middleware provides uniform view to
the application developer. So these applications can be
easily reused and ported. To perform various general
purpose functions, middleware provides common services
to the user as data integration, ORB etc. To make

application development easy middleware provides
common programming abstractions, also the middleware is
used for masking the heterogeneity, the distribution of the
underlying hardware and operating systems, and hide low-
level programming details [4]. Middleware is divided into 5
categories according to the communications model adopted
into middleware. They are database middleware, remote
procedure call (RPC), transaction processing monitor (TP
monitor), object request broker (ORB) and message
oriented middleware (MOM).
Database-oriented middleware provides a number of
important benefits as, an interface to an application, the
ability to convert the application language into something
understandable by the target database (e.g. SQL), the
ability to send a query to a database over a network, the
ability to process a query on the target database. In RPC the
body of the procedure resides on a remote host and can be
called the same way as a local procedure. Using RPC calls
are sent to another machine across a distributed
environment [1]. Procedural middleware supports remote
procedure calls (RPC) and communications can be made by
using primitives similar to local procedure calls. TP
monitor simplifies the construction of a transactional
distributed system. TP monitor is placed between the client
program and the databases, it shows databases updated
properly. It co-ordinates and monitor transactions across
multiple data sources. TP monitor enhance the
performance, reliability of server side systems [1]. ORB is
the program that acts as a broker between a client request
for a service from a distributed object or component and the
completion of that request. Distributed object systems are
CORBA, DCOM and EJB. Message Oriented Middleware
uses messaging provider to integrate messaging operations.
The main components of a MOM system are clients,
messages, and the MOM provider. They provide an API
and administrative tools. IBM MQSeries, Sun Java
Message Queue are two examples of this category.
In some of the existing middleware systems like SQMD
[5], OGSA-DAI[6], Open-Gate[7], MOCHA[8], DiSco[9],
OGSA-DQP[10] translation of data items to the global
schema is performed by either a wrapper or database
gateway. All these systems are having different
components in their architecture with certain features,
advantages and disadvantages. These systems works on
different homogeneous or heterogeneous datasets like
object oriented, xml or relational databases in restricted
application environment.

Darshana Shimpi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 427-430

www.ijcsit.com 427

MOCHA and Open-Gate middleware systems are based on
the general purpose database middleware systems, while
other systems like SQMD, OGSA-DAI and OGSA-DQP
are used for special purpose applications. For example,
SQMD middleware system makes use of virtual private
servers. OGSA-DQP can be used in any Grid application
that aims to integrate and analyse structured data
collections. DiSco is a mediator based middleware system.
Mediators accept queries and transform them into
subqueries that are distributed to databases. In DiSco
scalability is achieved, but there is integration problem.
Open-Gate system uses different data sources like object-
oriented and relational, but not xml. Also, in open-gate
IWRAP used is as an external interface to the middleware.
MOCHA middleware system is having basic database
middleware systems with components like QPC (Query
Processing Coordinator), DAP (Data Access Provider). In
MOCHA, QPC works as an integration server and DAP
works as a translator. Here DAP is similar to wrapper or
gateway, but not a pure wrapper, so scalability is not well
achieved in MOCHA. As a new site is added, it must
manage system-wide interactions.
As seen in literature, MOCHA and Open-Gate middleware
systems are based on the general purpose database
middleware systems, while other systems like SQMD,
OGSA-DAI and OGSA-DQP are used for special purpose
applications. For example, SQMD middleware system
makes use of virtual private servers. OGSA-DQP can be
used in any Grid application that aims to integrate and
analyse structured data collections. In open-gate IWRAP is
an external interface to the middleware. It is not the part of
a middleware. So when any user wants to use open-gate,
he/she must use IWRAP and is need to provide interface
with IWRAP. IWRAP acts as an interface for the
middleware that interacts with each data source and fetches
data result. In database middleware systems, the translation
of data items to the global schema is performed by wrapper
or gateway. MOCHA middleware system is having basic
database middleware systems with components like QPC,
DAP. In MOCHA, QPC works as an integration server and
DAP works as a translator. Here DAP is similar to wrapper
or gateway, but not a pure wrapper. Scalability is not well
achieved in MOCHA. As a new site is added, it must
manage system wide interactions.
DisCo is a mediator based middleware system. Mediators
accept queries and transform them into sub queries that are
distributed to databases. The mediator also contains a query
optimizer and run-time system. The query optimizer
searches for the best way to execute a query on the run-
time system. A wrapper supports the functionality of
translating queries appropriate to the particular server, and
reformatting answers (data) appropriate to each mediator.
As the overall functionality is conducted by the mediator it
overburdens it. It works as a query processor as well as
integrator. Hence it affects the system performance. In
DisCo scalability is achieved, but integration problem is
still there in the system. SQMD middleware system gives
architecture for scalable, distributed database system built
on virtual private servers. A single query request from end-
user is given to all the databases via middleware and
agents, and the same query is executed simultaneously by

all the databases. Here the problem is only single query is
given to the middleware, so it require more time to process
queries and overall processing cost increased. There is a
need to check performance for different configurations for
other resources and also memory for more efficient query
processing in the virtualization environment. These are
some drawbacks in existing middleware systems. There is a
need to develop a middleware system which can be used as
a general purpose middleware with scalability, reliability,
autonomy, and also gives high performance with low
communication cost.
There are research gaps which are stated here briefly as:
• An efficient integrator is needed for uniform access of

data.
• There is a need for effective wrapper which will take

part in integration process of the middleware, so that
system performance gets improved.

• Need to achieve scalability with heterogeneous data
sources.

This paper proposes the new middleware system SCM
(SCalable Middleware) with components query processor,
integrator and wrapper. This middleware is developed for
heterogeneous distributed databases. Each database must
have the wrapper. This wrapper interacts with each data
source and fetches data result.
The rest of the paper is organized as follows: Section 2
describes the architecture of the proposed middleware
system. Section 3 describes the application that we have
implemented also it shows experiment and its related result.
Conclusions and future work are given in section 4.

II. PROPOSED SYSTEM
We propose a general middleware system, which has base
as a database middleware system. This system is scalable,
reliable, autonomous and highly efficient with less
communication cost. Considering existing middleware
systems in literature review we found some of the research
gaps. To resolve all the problems, there is a need to develop
a conceptual framework for middleware system. Figure 1
shows the organization of the major components in the
Architecture of the SCM.

Fig 1. Conceptual framework for proposed scalable middleware

system (SCM)

Darshana Shimpi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 427-430

www.ijcsit.com 428

We have designed SCM with the major components as:
Query processor (QP), Integrator and Wrapper. Here we
use various data sources like oracle, mssql, mysql etc. The
work of each component in the system is explained in
following steps :
Step 1: Query processor (QP)
QP processes queries for client application. It requests the
integrator to get the schema map. QP processes the query
and sends fragments to the Ewrapper. QP controls
execution of all the queries received from the client
application. QP provides access to the metadata in the
system. Metadata shows schema mapping for the source
databases and the target databases. It keeps information of
the databases, tables, columns and the users. In the catalog
the log information (in terms of date, time, class, operation
and response time) is recorded for each operation like
insertion, deletion, updation etc. This catalog entry is used
to understand the behavior and work of the various
operations performed by the system. The main functions of
QP are described in following steps:
• It receives query from client for processing
• It requests the integrator to get the schema map
• QP processes the query.
• QP sends fragments to the Ewrapper.
Step 2: Integrator
Integrator includes information of data distribution and
schema map. The middleware system provides a uniform
view and access interface for each data source. Integrator
collects schema from wrapper and integrate it to form a
global schema. If there is any change in the schema, it is
transformed to the integrator and updates the same schema.
When it receives schema request from the QP, it then sends
the schema map to the QP. Here all different databases
(oracle, Mysql and mssql) are converted into a common
form. Client is unaware of this data distribution.
Step 3: Wrapper
Wrapper interacts with each database; gives data result.
Wrapper extracts data from various databases. As per the
client’s requirement wrapper takes data from various
databases like oracle, mysql or mssql and submits data to
the integrator. Wrapper provides some classes and
interfaces as DriverManager, Driver, ConnectionManager,
Statement and ResultSet. DriverManager class keeps a list
of database drivers. It matches connection requests from
the client application with the proper database driver. Here
in our system, for oracle we use oracle. jdbc. oracledriver,
for mysql database driver is com. mysql. jdbc. Driver and
for mssql we use jdbc. jtds. sqlserver. Driver interface
handles the communication with the database server.
ConnectionManager interface is used for contacting a
database. The connection object is used to communicate
with database. We use the Statement interface (and objects
created from this interface) to submit the SQL statements to
the database. Resultset object contains data retrieved from
a database after executing an SQL query using Statement
objects.

III. EXPERIMENTS AND RESULTS
As seen in conceptual framework of proposed middleware
system, we use different databases as Mysql, oracle and
Mssql. We developed an application for a particular

university. Here we took three colleges with three different
databases for three academic years (2011, 2012, 2013) and
three branches (Computer, IT, Electronics and
Telecommunication) . These colleges store their data in
different databases like college 1 is having mssql database,
college 2 has database in Mysql, college 3 is with oracle
database. The university is having the source database in
Mysql. In this we get topper information and result
information. Here client application is university. The
client will ask query about topper and result from various
colleges. If client asks for result in one of the given
colleges, it will show list of students with distinction
marks, first class, second class and failed students. Figure 4
shows the screen shot to view result summary. Client
applications have no idea where the data located, how to
connect to the data server, or what are the access interfaces.
All these tasks are handled by the middleware. It provides
location and access transparency. This database
middleware decomposes the query and find corresponding
sites for each data item which can handle the request.
Schema mapping is handled by the integrator. It shows the
schema mapping between the source databases and the
three target databases (that is heterogeneous databases for
colleges). In our application the administrator has full
access to the system. The administrator can do the
modifications while other users can have only the view
access.
Figure 2 shows screen shot to view university topper. Here
client will ask for the university topper. The result will be
the first three top ranker students from the mentioned
colleges. Figure 3 is to view college topper.

Fig 2. Screen shot to view university topper

Fig 3. Screen shot to view college topper

Darshana Shimpi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 427-430

www.ijcsit.com 429

Fig 4. Screen shot to see result

Table I: Response time (in milliseconds) for various queries

Table I shows response time for records for different
operations like insertion, deletion and updation. Here we
used three different databases oracle, mysql and mssql. For
each of these database response time is calculated for
different queries such as inserting record, deletion of record
or updation in the record, also we got response time for
data retrieval to find list of top ranker student from colleges
and university. As we seen in the table response time for
mysql database is less as compared to other databases.

IV. CONCLUSION AND FUTURE WORK

We developed the SCM, a scalable middleware system for
heterogeneous distributed databases. An attempt is made to
design the middleware which facilitates the communication
and coordination of application components for distributed
databases. This system scales very well as the number of
data sources increases. There are many factors which
affects the performance of the system. Data transfer rate is
different for each site. Accuracy of the system depends on
the integrator. Integrator includes information of data
distribution and schema map. The middleware system
provides a uniform view and access interface for each data
source. Response time is calculated for each record and for
different queries like insertion, deletion, updation. Only the
admin user can do the modification in the system. Other
users have only view access, they have no rights to do any
modification in the system. The work of wrapper could be
improved to minimize the communication cost. In future,
distributed query cost analysis can be done and it can be
improved to work for the complex queries.

REFERENCES
 [1] S. Chavan, M. Sonawane, A. Chavan, and M. Sarjare. “

Middleware: An architecture for distributed systems services”.
 [2] R. Elmasri and S. Navathe. Fundamentals of database systems , 2009.
 [3] S. Krakowiak. “Middleware architecture with patterns and

frameworks”. 2007.
 [4] M. Tamer O¨ zsu and P. Valduriez. Principles of distributed

database systems. Springer Science+ Business Media, 2011.
 [5] Kim, M. E. Pierce, and R. Guha. “Sqmd: Architecture for scalable,

distributed database system built on virtual private servers”. In
eScience, 2008. eScience’08. IEEE Fourth International Conference
on, pages 658–665. IEEE, 2008.

 [6] X. Liu, Y. Shi, Y. Xu, Y. Tian, and F. Liu. “ Heterogeneous
database integration of epr system based on ogsa-dai. In High
Performance Computing and Applications”, pages 257–263.
Springer, 2010.

 [7] N. Reda, M. Ghaleb, and F. Fayed. “Open-gate: An efficient
middleware system for heterogeneous distributed databases.
International Journal of Computer Applications”, 45(2), 2012.

 [8] M. Rodr´ıguez-Mart´ınez and N. Roussopoulos “ Mocha: a self-
extensible database middleware system for distributed data
sources”. In ACM SIGMOD Record, volume 29, pages 213–224

 [9] A. Tomasic, L. Raschid, and P. Valduriez. “Scaling heterogeneous
databases and the design of disco. In Distributed Computing
Systems”, 1996., Proceedings of the 16th International Conference
on, pages 449–457. IEEE, 1996.

[10] H. Xiang. “Integrated queries over a heterogeneously distributed
scientific database using ogsa-dqp”. In Information Technology and
Artificial Intelligence Conference (ITAIC), 2011 6th IEEE Joint
International, volume 1, pages 421–425. IEEE, 2011.

Operation
Response
time for
Mysql

Reaponse
time for
Oracle

Response
time for
Mssql

Insertion 38ms 229ms 220ms

Deletion 37ms 229ms 215ms

Data retrival to
view college
topper

50ms 231ms 235ms

Data retrieval to
view university
topper

58ms 233ms 239ms

Data retrival to
see result
summary

58ms 236ms 242ms

Darshana Shimpi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 427-430

www.ijcsit.com 430

